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Abstract 
Understanding the role of soil in climate change mitigation requires accurate estimates of soil 
carbon. Soil Organic Carbon (SOC) plays a vital role in mitigating global climate change, and 
alleviates land degradation and enhances crop production and food security.  Soil samples were 
collected with soil auger from 25 sample plots (30 m x 30 m) at depths of 0 – 15 cm in Omo 
Biosphere Reserve. The quantity of SOC per hectare was determined using a bulk density 
measurement.  To examine the spatial variance of soil parameters, descriptive statistics and 
Kriging spatial interpolation techniques were employed. The estimated quantity of soil organic 
carbon in the Omo biosphere spans from 9.89 to 76.61 ton/ha with a mean of 29.14 ton/ha, 
whereas the estimated amount of CO2 sequestered ranges from 36.31 to 281.15 ton/ha with a 
mean of 106.94 ton/ha. The estimated total content of the SOC in the biosphere reserve was 
11,801.43 tons, while the CO2 equivalent is 43,311.25 tons.  Due to varying nuggets to sill 
ratios, the soil properties displayed varied spatial dependence. Strongly spatially dependent 
were OM, N, Cu, Na, and K, somewhat spatially dependent were Mn, Fe, Mg, Sand, and Clay 
and weakly spatial dependent were OC, pH, P, Zn, Ca, Silt and CEC. The study concluded that 
monitoring soil degradation through details soil mapping is an important step in reducing 
emission and enhancing soil carbon sequestration.  
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Introduction 
A vital natural resource that is essential to the 
food production is soil (Buol et al., 2003). 
Climate, vegetation or other organic matter, 
geology, local topography, and time were listed 
as environmental factors that influence soil 
(Ezeaku, 2011). Healthy soils are crucial for 
sustaining the growth of both natural and 
managed vegetation, as well as other ecosystem 
functions such as climate regulation and oxygen 
production. They also provide feed, fiber, fuel 
and other materials for making medications 
(FAO, 2015). The links between soils and 
vegetation is reciprocal. Plant develops more 
quickly in fertile soil because it supplies them 
nutrients, serves as a reservoir for their water, and 

provides the substrate for their roots to attach to. 
By stabilising the soil, preserving the water and 
nutrient cycle and lowering water and wind 
erosion, vegetation, tree cover, and forests in turn 
prevent soil deterioration and desertification 
(FAO, 2015). Regarded as the main cause of 
global warming, carbon dioxide (CO2) is one of 
the main greenhouse gases, accounting for 72% 
of anthropogenic greenhouse gases (IPCC, 2007). 
According to estimates, 9–26% of the global 
greenhouse effects are caused by CO2 (Kiehl, et 
al., 1997). From 280 parts per million (ppm) in 
the pre-industrial period (1750) to 408.84 ppm in 
July 2017, a rise of 2.11 ppm per year has been 
seen in the atmospheric CO2 concentration 
(NOAA, year?). The main cause of this 
significant increase in CO2 concentration level in 
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the atmosphere is attributed to anthropogenic 
activity (Ahmed, 2018). The soil C pool is 
approximately four times bigger than the 
atmospheric C pool globally, and variations in the 
soil CO2 content have impact on the equilibrium 
of the atmospheric CO2 (Luo, et al., 2006). Even 
though forests cover just 30 % of the planet’s 
surface, they contain more than two-thirds of the 
world’s soil organic carbon stock, making them 
the most carbon-rich terrestrial ecosystems 
(Ahmed, 2018). Using photosynthesis to fix 
atmospheric carbon into plant tissues, plant litter 
is then released into the soil. A fraction of this C 
is retained in soils, while the majority is released 
to the atmosphere as a result of soil respiration. 
Some of the stored C in soil can be sequestrated 
as soil organic matter and/or humus for as long as 
a million years (Cheng, et al., 2007).  Although 
measuring soil pararameters can be expensive 
and time consuming, it is possible to estimate 
their anticipated values in places where 
observations are not possible by using 
geostatistical and spatial interpolation techniques, 
in particular (Goovarerts, 1999; Pebesma, 2006 
and Krasilnikov, et al., 2008). Therefore, 
geostatistics involves the analysis and 
interpretation of any spatially referenced data 
(Hengl, 2009) and the estimation and modelling 
of spatial correlation (Biv, et al., 2008). Its 

advantage is that it predicts both geographical 
trends and spatial correlations and identifies 
spatial variability at both large and small scales 
(Cressie, 1993). To provide the most precise and 
objective findings for each situation at hand, it is 
crucial to select the most suitable geostatistical 
models and methodologies. environmental 
sciences frequently employ geostatistics (Hengl, 
2009; Goovaerts, 1997; Li, et al., 2008 and Li, et 
al., 2014)   
 

Materials and Method 

Study Area 
Omo Forest Reserve, which derives its name 
from the River Omo that traverses it, is located 
between latitudes 6o 42' to 7o 05' N and longitude 
4o 12' and 4o 35' E (Fig. 1) in Ogun state South-
western Nigeria. Omo covers about 130,500 
hectares, which includes a 460 ha Strict Nature 
Reserve established in 1977 known Omo 
Biosphere (Okali and Ola-Adams 1987). The 
climate is tropical, and it is characterized by wet 
(February to November) and dry (December and 
January) seasons. The temperature ranges 
between 210 and 340C while the annual rainfall 
ranges between 150 and 3000 mm (Larinde et al., 
2011; Adedeji et al., 2015). 



Mshelia, ZH & Aigbokhan, OJ/Estimation of Soil Carbon & Spatial Variability of Soil Properties 

31 
 

 
 Figure 1. Omo Forest Reserve Showing the Study Area 

In the Omo Biosphere Reserve in 2018, during 
the dry season, soil samples were taken from 25 
sample plots (30 m x 30 m). Within each sample 
plot, a diagonal line was created, and soil samples 
were taken at the two ends and in the middle of 
the line. Using a soil auger, four soil cores were 
used to obtain soil samples from 0 – 15 cm in 
depth. Each plot of soil samples were properly 
mixed, and composite samples were taken, kept 
in polythene bags and labelled appropriately for 

laboratory analysis. Soil samples were air dried 
and put through a 2 mm sieve. 
 
Bulk density.  
The bulk density of the samples was determined 
by the test for bulk density: oven-dry a sample of 
known volume to remove all moisture and weigh 
it. The bulk density is the dry weight in grams 
divided by the volume in cubic centimeters. 
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Unit bulk density = 𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔
𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼 𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 𝒐𝒐𝒐𝒐 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔

  (1) 
 
Soil Carbon Estimation 
A proportion of the total soil organic carbon is 
often reported through soil testing for organic 
carbon. The quantity of carbon per hectare in a 
specific depth of soil was estimated using a 

measure of bulk density. The proportion of 
organic carbon in soil, represented as a unit of 
carbon value, and the bulk density, measured in 
grams per cubic meter. 

 
% of soil organic carbon x Bulk density (g/cm3) x Soil depth (cm)          (2)  
 
Descriptive statistics 
Descriptive statistics including mean, median, 
standard deviation, coefficient of variation, 
minimum, maximum, skewness (skew), and 
kurtosis, were used to calculate the soil 
properties. Skewness and kurtosis of the data 
were used to test for normality for each of the soil 
properties in the R programming language. 
logarithmic transformation was applied to some 
of the data that did not pass the normality test 
(OC, OM, N, Na, and K). The variability of the 
soil properties was interpreted using the 

coefficient of variation (CV) and classified into 
most (CV: >35%), moderate (CV: 15-35%) and 
least (CV: <15%) variable ranges (Wilding, 
1985).  
 
Geostatistical Analysis 
For this study, the ordinary kriging method was 
employed. It uses a linear geostatiscal 
interpolation method. The sums of the 
neighbouring sampled concentrations were used 
to construct Kriging estimations. The following 
equation was employed to compute it (Wang 
1999): 

 
*

0( ) ( )
n

i i
i l

Z x z xλ
=

=∑
      (3) 

 
Where: 

*
0( )Z x  = is the predicted value at position 0x  

( )iz x  = the known value at sampling site x  
λ  = the weighting coefficient of the measured site, and 
n  = is the number of sites within the neighbourhood searched for the interpolation. 
 
Semivariogram modelling and estimation, akin to 
fitting a least line in regression analysis are 
crucial for structural analysis and spatial 
interpolation (Chen, et al, 2017). To pinpoint the 
best-fit model for each soil attribute, estimate of 
semi-variogram models including stable, 

gaussian, exponential, circular and spherical, 
were made. The intrinsic and regionalised 
variable theories allow for the expression of a 
semivariogram as shown below (Nielsen and 
Wendroth, 2003): 

 
( )

2

1

1( ) [ ( ) ( )]
2 ( )

N h

i i
i

h z x z x h
N h

γ
=

= − +∑
     (4) 

Where: 
 ( )hγ  = is the semivariance 
h   = the lag distance 
z   = the parameter of the soil property 
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( )N h  = the number of pairs of locations separated by a lag distance h  
( )iz x and ( iz x )h+ = are values of z at ix and ix h+ (Wang and Shao2013). 

 
The empirical semi-variograms obtained from the 
data were fitted by theoretical semi-variogram 
models to produce geostatistical parameters, 

including nugget variance 0( )c , structured 

variance 1( )c , sill variance 0 1( )c c+ , and distance 
parameter ( )k . The nugget/sill ratio, 

0 0 1/ ( )c c c+  was calculated to characterize the 
spatial dependency of the values. In general, a 
nugget/sill ratio <25 % indicates strong spatial 
dependency and >75 % indicates weak spatial 
dependency; otherwise, the spatial dependency is 
moderate (Cambardella, et al.1994). 
 

Cross Validation 
The cross-validation technique was performed to 
choose the best fitted semi-variogram model for 
each of the studied soil properties, that is, by 
comparing the estimated values which were 
kriged by using the semi-variogram model with 
the actual values. Thus, for each sampled 
location, the collected observations included the 

measured value, ( )iZ x and the estimated 
value, 𝑍𝑍′(𝑥𝑥𝑖𝑖), as well as their standard values of 
𝑍𝑍1(𝑥𝑥𝑖𝑖) and 𝑍𝑍2(𝑥𝑥𝑖𝑖). The performance statistics 
were assessed in terms of mean error (ME), 
Average Standard Error (ASE), Root Mean 
Square Error (RMSE), Mean Standard Error 
(MSE), Root Mean Square Standardized Error 
(RMSSE) (Yang, et al, 2011) and expressed in 
equation 5-9. 

 

1

1 [ ( ) '( )]
N

i i
i

ME Z x Z x
N =

= −∑
       (5) 

1 2
1

1 [ ( ) ( )]
N

i i
i

MSE Z x Z x
N =

= −∑
      (6)   

2

1 1

1 '( ) '( ) /
N N

i i
i i

ASE Z x Z x N
N = =

  = −  
  

∑ ∑
     (7)   

[ ]2

1

1 ( ) '( )
N

i i
i

RMSE Z x Z x
N =

= −∑
      (8)  

 
[ ]2

1 2
1

1 ( ) ( )
N

i i
i

RMSSE Z x Z x
N =

= −∑
     (9)   

Where: 
( )iZ x = measured value 

𝑍𝑍′(𝑥𝑥𝑖𝑖), = the estimated value 
𝑍𝑍1(𝑥𝑥𝑖𝑖) = standard value 
N = number of observations 
 
If ME of the model equals 0, ASE equals RMSE, 
MSE equals 0, RMSSE equals 1(Yang, et al, 
2011). This indicates that the interpolation is 
method unbiased based on ME value of zero or 
close to zero and the goodness of fit accuracy on 

Kriging algorithm based on the value of ASE 
equals RMSE.  
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Results and Discussion 

Estimation of Soil Organic Carbon 
The estimated amount of soil organic carbon in 
the Omo biosphere ranges from 9.89 to 76.61 
ton/ha, with a mean of 29.14 ton/ha, while the 
range per plot was 0.89 to 6.89 ton/plot (900m2), 
with mean of 2.62 ton/plot (Table 1). The CO2 
sequestered ranges from 36.31 to 281.15 ton/ha 
and 3.27 to 25.30 ton/plot, with a mean of 106.94 
ton/ha and 9.62 ton/plot respectively (Table 1). 
Omo Biosphere Reserve covered 420 ha and 
included 15 ha of water bodies. Therefore, the 
actual area covered by forest and open space was 
405 ha. The estimated total content of the organic 
soil carbon in the biosphere reserve was 
11,801.43 tons, while the CO2 equivalent is 
43,311.25 tons. Soils are a major source of carbon 
emissions aside from deforestation. The soil 
carbon pool is the largest and most active carbon 
pool in terrestrial ecosystems and is an important 
source of atmospheric greenhouse gases (Wang et 
al. 2021). The global soil organic carbon (SOC) 
pool is about 1,550 Pg, which is twice the 
atmospheric carbon pool and three times the 
biological carbon pool (Lal, 2004). Thus, slight 
changes in the SOC pool will significantly affect 
the atmospheric carbon content; for example, a 

change of only 10% of the SOC pool is equivalent 
to 30 years of CO2 releases caused by human 
activities (Kirschbaum, 2000). In addition, a 
slight increase in the rate of soil carbon oxidation 
caused by an increase in temperature will increase 
the atmospheric CO2 concentration (Davidson 
and Janssens, 2006). Makinde, et al., (2017) 
reported 5.8 tons of soil organic carbon in Oluwa 
Forest Reserve South Western Nigeria. Although, 
it was lower than the SOC reported in this study, 
it is significant in increasing the capacity of the 
forest to sink carbon. Soil carbon sequestration 
plays an important role in mitigating 
anthropogenic increases in atmospheric CO2 
concentrations. Favourable climate conditions, 
particularly high precipitation, tend to increase 
both species richness and belowground biomass, 
which has a consistent positive effect on SOC 
storage in forests, shrublands, and grasslands 
(Chen et al., 2018). The high species diversity of 
Omo Biosphere Reserve explained why soil 
organic carbon contributed significantly to the 
reserve’s capacity to sequester carbon. 
Ecosystem management that maintains high 
levels of plant diversity enhances SOC storage 
and other ecosystem services that depend on plant 
diversity. As a result, in any carbon study, soil 
carbon must always be considered. 

Table 1. Summary of Soil Carbon Estimation from the Sample Plots  

Parameter % soil C Soil C Soil C CO2 CO2 

  (t/ha) (t/plot) (t/ha) (t/plot) 

Mean 1.7372 29.13932 2.622539 106.9413 9.624717 

Minimum 0.6 9.8928 0.890352 36.30658 3.267592 

Maximum 3.98 76.60704 6.894634 281.1478 25.30331 
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Variability of Soil Properties 
Table 1 shows the descriptive statistics of the 
studied soil properties. The soil was acidic with 
pH ranging between 4.81 to 6.07 and average of 
5.48. According to the rating of Esu (1991) the 
soil nutrients are classified into low, medium and 
high. The organic carbon and matter content of 
the soil ranged between 0.6% and 3.98% with a 
mean of 1.74% and 1.03% and 6.86% with mean 
of 3.04%, respectively. The status of the organic 
carbon was low, while the organic matter was 
moderate. The mean nitrogen of 0.14% was low, 
while phosphorus with mean value of 4.85 mg/kg 
was moderate. Manganese (Mn), iron (Fe), 
copper (Cu) and zinc were high with mean value 
of 27.65 mg/kg, 53.84 mg/kg, 3.51 mg/kg and 
81.52 mg/kg respectively. The high content of 
(Zn) of Mn, Fe, Cu and Zn was due to the acidity 
of the soil that encourage the uptake of 
micronutrients. The concentration of potassium 
(K) was low with mean of 0.0015 Cmol/kg, 
moderate concentration of sodium (Na) with 
mean of 1.64 Cmol/kg whereas, magnesium 
(Mg), calcium (Ca), and Cation Exchange 
Capacity (CEC) was in the study. The Coefficient 
of Variation (CV) ranged from 6.23% in pH to 
392.23% in K. The range of CV for the soil 
sampling locations suggested different degrees of 
heterogeneity among the soil properties studied. 
 
Soil Properties Spatial Distribution 
The distribution of the soil chemical properties, 
OC, OM, N, P, Na and K was not normal due to 

the greater degrees of skewness and kurtosis, as 
shown in Table 2. After applying a logarithm 
transformation to the data sets to reduce the skew 
and kurtosis values, the altered data sets were 
employed in the spatial analysis, as shown in 
Figure 2 a-r. The parameters of the analysed soil 
attributes’ model fitting and semi-variance 
analysis are shown in Figures 2 a-r and Table 3. 
for their notable match to the soil characteristics, 
various theoretical semi-variogram models were 
shown. the semi-variogram of pH, P, Na, K, Mg, 
Ca, sand, clay and silt best fits an exponential 
model. The semi-variograms of OM, Cu Zn and 
CEC, were best fitted by the Gaussian model; OC 
and N by the stable model; and Fe by the spherical 
model. According to previous studies’ findings, 
the exponential model best captures the spatial 
variability in soil chemical properties since it 
explains the most variance in the dataset (Reza et 
al., 2010., Venteris et al., 2013, Bhunia et al., 
2016, Lark, 2000., Tripathi et al., 2015., Panday 
et al., 2018).  
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Table 2. Descriptive statistics of the studied soil properties 
Parameter Mean Median SD Min Max CV 

(%) 
Skew 
Ness 

Kurtosis Skew 
ness 
(LT) 

Kurtosis 
(LT) 

Ph 5.48 5.53 0.34 4.81 6.07 6.23 -0.29 -0.68 

  

O.C (%) 1.74 1.42 0.83 0.60 3.98 48.19 1.25 1.19 0.21 -0.01 

O.M (%) 3.04 2.58 1.42 1.03 6.86 46.85 1.22 1.2472 0.10 0.154 

N (%) 0.142 0.12 0.07 0.05 0.34 48.50 1.36 2.13 -0.05 0.40 

P (mg/kg) 4.85 4.47 2.01 2.40 11.23 41.45 1.44 2.96 0.28 0.06 

Mn (mg/kg) 27.65 28.50 13.94 2.00 52.70 50.43 -0.25 -0.629 

  

Fe ( mg/kg) 53.84 47.00 27.21 7.00 111.00 50.54 0.34 -0.66 

  

Cu (mg/kg) 3.51 3.40 1.47 0.80 6.70 41.93 0.17 0.13 

  

Zn (mg/kg) 81.52 74.00 26.96 40.00 134.00 33.07 0.31 -0.94 

  

Na 
(Cmol/kg) 

1.64 1.09 1.93 0.31 8.58 118.14 3.16 9.37 1.45 3.82 

K 
(Cmol/kg) 

0.01 0.01 0.01 0.01 0.031 392.23 4.99 24.96 3.67 15.92 

Mg 
(Cmol/kg) 

4.84 4.59 2.19 0.74 9.79 45.19 0.79 0.83 

  

Ca 
(Cmol/kg) 

9.81 9.88 4.034 4.49 20.06 41.128 0.7161 0.29 

  

Sand (%) 77.94 76.50 5.46 70.50 92.50 7.01 0.89 0.88 

  

Clay (%) 12.14 11 3.16 7.00 19.00 26.04 0.24 -0.25 

  

Silt (%) 10.16 10.5 4.05 0.50 16.50 39.84 -0.35 -0.13 

  

CEC 
(Cmol/kg) 

16.28 16.29 4.64 9.37 26.41 28.49 0.45 -0.66 

  

 
 

Nugget to sill ratio of <0.25 indicates strong 
spatial dependence due to the intrinsic (inherent) 
factors such as soil texture and mineralogy, while 
a ratio between 0.25 and 0.75 indicates moderate 
spatial dependence due to extrinsic and intrinsic 
factors, and a ratio >0.75 indicates weak spatial 
dependence due to the extrinsic factors such as 
fertilization and tillage (Cambardella et al., 

1994). Because of the nugget to silt ratios, the soil 
properties had a wide range of spatial 
dependence. as shown in Table 3, OM, N, Cu, Na, 
and K had strong spatial dependence, whereas 
Mn, Fe, Mg, Sand and Clay had moderate spatial 
dependence and OC, pH, P, Zn, Ca, Silt and CEC 
had weak spatial dependence, which could be due 
to the poor spatial distribution of these properties, 
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and thus additional research using a large scale 
sampling design to capture the spatial distribution 
of these variables is recommended. The 
maximum distance at which spatial dependence 
or autocorrelation exists was defined as the range 
value of a semi-variogram (Metwally et al., 
2019). From Table 3, soil properties ranged 
between 810 m for OC and OM and 3995 m for P 
and Ca. Soil properties with range values greater 
than the obtained range values have no spatial 
dependence. 

Figures 2a and 2b show the model fit of soil 
Organic Carbon (SOC) and Soil Organic Matter 
(SOM), with the Stable and Gaussian models 
given as the best fits for the parameters. The SOC 
and SOM have nuggets of 0.00005 and 0.001 and 
sills of 0.05099 and 0.0501, respectively, with 
nugget to sill ratio of 0.001 and 0.02 (Table 3), 
given a strong spatial dependence that enhanced 

the prediction.  The mean error (ME) for SOC and 
SOM is 0.026 and 0.024, the average standard 
error (ASE) is 0.18 and 0.18, and the root mean 
standard error (RMSE) is 0.17 and 18. For SOC 
and SOM, the mean standard error (MSE) is -
0.110 and -0.091, and the root mean square 
standardized error (RMSSE) is 1.29 and 1,18, 
respectively. The cross-validation results show 
that the interpolation method was unbiased with 
an ME value of zero and the goodness of fit 
accuracy of the Kriging algorithm with ASE 
equals RMSE and RMSSE value of one, as shown 
in Table 3. Figure 4.4 shows the map of spatial 
distribution of carbon (ton/ha) in the biosphere, 
with the north-eastern part of the biosphere 
having 21.28 - 28.84 tons of carbon per hectare, 
while most of the north-west, central and South-
western regions of the biosphere have 28.84-
44.48 tons of carbon per hectare.   
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Table 3. Semi-variance Analysis of the Soil Properties 
 

 
 

Variable  Model  Nugget Partial 
Sill 

Sill Nugget/ 
Sill 

SDC Range 
(m) 

ME RMSE MSE RMSSE ASE 

OC (%) Stable 0.01 0.05 0.05 0.01 S 810 -0.026 0.180 -0.11 1.29 0.17 
             
OM (%) Gaussian 0.01 0.049 0.05 0.020 S 810 -0.024 0.18 -0.09 1.18 0.18 
pH Exponential 0.116 0.000 0.12 1.000 W 3995 -0.003 0.36 -0.01 1.01 0.36 
TN (%) Stable 0.00 0.051 0.05 0.00 S 1520 -0.003 0.17 -0.01 1.1583 0.18 
P (mg/kg) Exponential 0.03 0.00 0.03 1.00 W 3995 -0.01 0.18 -0.03 1.015 0.17 
Mn (mg/kg) Gaussian 179.07 56.83 235.90 0.75 M 850 -0.79 14.46 -0.05 0.93 15.78 
Fe (mg/kg) Spherical 351.99 428.55 780.54 0.45 M 963 -0.57 28.053 -0.02 1.027 27.1 
Cu (mg/kg) Gaussian 0.29 2.69 2.99 0.10 S 850 -0.04 1.248 -0.01 1.073 1.39 
Zn (mg/kg) Gaussian 707.66 29.921 737.58 0.96 W 1339 -0.60 27.54 -0.02 0.98 28.20 
Na (Cmol/kg) Exponential 0.00 0.12 0.12 0.00 S 1150 -0.01 0.35 -0.03 1.107 0.31 
K (Cmol/kg) Exponential 0 0.18 0.18 0.00 S 2380 -0.03 0.46 -0.05 1.28 0.29 
Mg 
(Cmol/kg) 

Exponential 1.47 3.603 5.071 0.29 M 1739 -0.02 2.15 -0.01 1.08 2 

Ca (Cmol/kg) Exponential 16.27 0.00 16.27 1.00 W 3995 0.01 4.22 -0.01 1.01 4.19 
Sand (%) Exponential 22.57 13.23 35.80 0.63 M 1608 0.37 5.60 0.06 0.96 5.86 
Clay (%) Exponential 6.711 5.414 12.125 0.55 M 1765 -0.154 3.51 -0.039 1.054 3.32 
Silt (%) Exponential 13.91 3.097 17.00 0.82 W 1740 -0.16 4.05 -0.04 0.97 4.17 
CEC 
(Cmol/kg) 

Gaussian 21.31 3.69 25.00 0.85 W 1355 0.06 4.97 0.01 0.99 5.05 
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Figure 2a. Soil Organic Carbon (SOC)  Figure 2b. Soil Organic Matter (SOM) 

 
Figure 2c. Total Nitrogen (TN)   Figure 2d. Phosphorus (P) 

 



Ife Social Sciences Review 2023 / 31(1), 29-51 

40 
 

 
Figure 2e. Copper (Cu)  Figure 2f. Zinc (Zn) 

 
Figure 2g. Manganese (Mn)          Figure 2h. Iron (Fe) 
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Figure 2i. Sodium (Na)     Figure 2j. Potassium (K) 

 
Figure 2k. Magnesium (Mg)   Figure 2l. Calcium (Ca) 
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Figure 2m. Soil pH     Figure 2n. Clay 

 

 
   

Figure 2o. Sand     Figure 2p. Silt 
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Figure 2q. Cation Exchange Capacity (CEC)  Figure 2r. Soil Organic Carbon ton/ha 

 

Figure 2. (a-r).  Result of the Semi-variogram and fitted models for pH, SOC, SOM, N, P, Fe, Mn, Cu, Mg, Na, k, Zn, Sand, Silt, Clay and CEC 
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Figure 3. Spatial Distribution of Organic Carbon (ton/ha) 

Figure 4 shows the spatial distribution maps 
of SOC and SOM. In the north-east and 
central parts of the Omo biosphere, the 
percentage of soil organic carbon was 0.6-
1.05 % and organic matter had the lowest 
value (1.03-1.87) in the area. It shows the 
positive correction between organic carbon 
and organic matter, with the two maps 
looking almost the same due to the spatial 
distribution of soil properties. Stable and 
exponential models gave the best fit for 
Total Nitrogen (NT) and Available 
Phosphorus (AP) (Table 3). Figures 2c and 
2d depict the model fit for nuggets of 0 and 
sills of 0.051 and 0.027 with nugget to sill 
ratio of 0 and 1 (Table 3), respectively, given 
a strong and weak spatial dependence for the 
two soil properties. The cross-validation 
technique performed for SOC and SOM has 
a mean error (ME) of 0.002, 0.004, average 
standard error (ASE) of 0.18, 0.17, Root 
Mean Standard Error (RMSE) 0.17, 18, 
Mean Standard Error (MSE) -0.008, -0.027 
and Root Mean Square Standardized Error 
(RMSSE) of 1.15, 1,01 for TN and AP, 
respectively.  The cross-validation results 
show that the interpolation method was 
unbiased with an ME value of zero and the 
goodness of fit accuracy of the Kriging 
algorithm with an ASE equals RMSE and 
RMSSE value of one, as shown in Table 3. 

The analysis gave an output of the spatial 
distribution maps of TN and AV in Figure 5. 
The spatial distribution map of total nitrogen 
shows the same trend as SOC and SOM, 
while the entire biosphere has an AP of 4.11-
5.22 mg/kg with an insignificant area in the 
South-west of the map having 3.51-4.11 
mg/kg of AP.  
 
Figures 2e and 2f show the model fit of 
Copper (Cu) and Zinc (Zn) with the 
Gaussian models given the best fit the 
parameters. Cu and Zn have nuggets of 
0.294, 707.6 and sills of 2.990, 737.9 with 
nugget to sill ratio of 0.10 and 0.96 (Table 3) 
respectively. Cu has a strong spatial 
dependence, as seen in the graph, rising from 
its nugget of 0.294 to its sill of 2.99, while 
Zn has a weak spatial dependence. The 
cross-validation technique performed for Cu 
and Zn showed that the interpolation method 
was unbiased based on ME, ASE, RMSE 
and RMSSE values (Table 3). Figure 6 
shows the map of the spatial distribution of 
Cu (mg/kg) and Zn (mg/kg) in the biosphere, 
with the northern and central part of the Omo 
biosphere having the highest concentration 
of Cu (4.7-6.7 mg/kg) and the South-western 
and eastern parts having the lowest 
concentration of Cu (0.8-2.8 mg/kg). 72.62-
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91.63 mg/kg of Zn was concentrated in the 
Omo biosphere.  
 

 
Fig. 4. Spatial Distribution of Organic Carbon (a) and Organic Matter (b).   

 
Fig. 5. Spatial Distribution of Nitrogen (a) and Phosphorus (b) 
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Figure 6. Spatial Distribution of Copper (a) and Zinc (b)  

The Gaussian and Spherical models were the 
best fit for Manganese (Mn) and Iron (Fe), 
as shown in Figures 4.3g and 4.3h. The 
nuggets-to-sills ratio of 0.75 and 0.45 (Table 
4.12) showed a moderate spatial 
dependence, with the spatial distribution 
map of showing concentrations of Mn of 
29.65 - 40.66 mg/kg in the north and south 
of the Omo biosphere while the central 
portion has Mn between 19.6 - 29.65 mg/kg. 
The north-east and South-western part of the 
Omo biosphere has Fe concentration of 58.8-
81.98 mg/kg, 25.51 - 40.29 mg/kg while the 
remaining part of the biosphere has Fe 
concentration of 40.29 - 81.98 mg/kg 
(Figure 7). Both Sodium (Na) and Potassium 
(K) have a strong dependence, with the 
exponential being the best fit for both. They 
have a nuggets-to-sills ratio of 0, 0 and 
0.119, 0.179 respectively, and the cross-
validation technique used for Na and K 
revealed that the interpolation method was 
unbiased based on ME, ASE, RMSE and 
RMSSE values (Table 3). The spatial 
distribution maps (Figure 8) improve the 
prediction by showing the concentration of 
Na across the Omo biosphere ranging from 

0.31-0.8 to 3.3-8.6 Cmol/kg, with 0.94-1.4 
covering the largest area. K concentration 
ranges from 0.0002-0.0003 to 0.0021-0.031 
Cmol/kg. The lowest concentration was in 
the north and south east while highest was at 
the South Western part of the biosphere. The 
exponential model was the best for 
Magnesium (Mg) and Calcium (Ca). The Mg 
has a moderate spatial dependence with 
nugget to sill ratio of 0.29 while Ca has a 
weak spatial dependence with nugget to sill 
ratio of 1. The cross-validation technique 
performed for Cu and Zn showed that the 
interpolation method was unbiased based on 
ME, ASE, RMSE and RMSSE values (Table 
3). Figure 9 showed the spatial distribution 
maps Mg and Ca. From north west to south 
east of the biosphere Mg concentration was 
2.88-4.58 Cmol/kg with the highest of 7.65 - 
9.79 Cmol/kg at the South Western part of 
the biosphere. The biosphere has Ca 
concentration of 8.39-11.29 Cmol/kg. Sand, 
Clay and Silt have moderate, moderate and 
weak spatial dependence with the 
exponential model as best fit for the 
parameters. 
 



Mshelia, ZH & Aigbokhan, OJ/Estimation of Soil Carbon & Spatial Variability of Soil Properties 

47 
 

 
Figure 7. Spatial Distribution of Mn (a) and Iron (b). 

 
Figure 8. Spatial Distribution of Sodium (a) and Potassium (b) 
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Fig. 9. Spatial Distribution of Mg (a) and Calcium (b) 

 

 
Fig. 10. Spatial Distribution of Soil pH (a) and Clay (b) 
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Fig. 12. Spatial Distribution of Sand (a) and Silt (b) 

 

 
Fig. 13. Spatial Distribution of CEC 
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Conclusion 

The results reported in this study revealed 
the high potential of that soil organic carbon 
has in mitigating the impacts of climate 
change. The soil variability shows the high 
uptake of micronutrient due the acidity of the 
soil as revealed from the result. There is 
wide range of spatial dependency in the soil 
property as some are strongly, moderately 
and weakly dependent. Under half of the 
semi-variogram range value, soil samples 
should be separated. By obtaining samples at 
intervals less than half of the acquired range 
values of the researched soil properties, one 
may utilise the range values for soil 
properties to schedule future soil sampling 
for geostatistical research. Thus, additional 
research using a large-scale sampling design 
to capture the spatial distribution of these 
variables is recommended. Both directly and 
indirectly, climate change can impact soil 
properties. The immediate consequences 
include changing soil moisture and 
temperature regimes, altered organic carbon 
transformations, and altered nutrient 
cycling, as well as higher soil erosion rates 
brought on by the frequency of heavy 
rainfall events. A crucial step in the lowering 
emissions and increasing aboveground 
biomass is by monitoring soil degradation 
through thorough soil mapping. The 
consequence of improper land use on the soil 
management and regeneration of plants may 
be found through soil mapping. 
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